Almost Everywhere Verification of Timed Properties

Houda Bel mokadem¹-Béatrice Bérard²-Patricia Bouyer¹ François Laroussinie¹

- (1) LSV CNRS & ENS de Cachan France
- (2) LAMSADE CNRS & Université Paris-Dauphine
 - MeFoSyLoMa January 2006

satisfies?

Verification by model-checking

Verification by model-checking

Which model?

 For Systems: finite automata, Kripke structures, timed automata, hybrid automata, cost automata, Petri nets . . .

For Properties:
 LTL, TPTL, MTL, CTL, TCTL...
 Pnueli: Using temporal logic for expressing the properties.

Which model?

 For Systems: finite automata, Kripke structures, timed automata, hybrid automata, cost automata, Petri nets . . .

For Properties:
 LTL, TPTL, MTL, CTL, TCTL...
 Pnueli: Using temporal logic for expressing the properties.

Expressiveness/Complexity

Outline

- CTL and Timed CTL
- Extension of TCTL: TCTL^{ext}
- Expressiveness power

 - \bullet TCTL^a \prec TCTL^{ext}
- Model-checking
- Conclusion and future work

Outline

- CTL and Timed CTL
- Extension of TCTL:TCTL^{ext}
- Expressiveness power
- Model-checking

Definitions: CTL and TCTL

- CTL:
 - atomic propositions $P_1 P_2 \dots$
 - boolean operators $\neg \varphi \qquad \varphi \wedge \psi$
 - ullet temporal operators ${\sf EX} arphi$ ${\sf AX} arphi$ ${\sf E} arphi {\sf U} \psi$ ${\sf A} arphi {\sf U} \psi$

where P_i are atomic propositions.

- TCTL:
 - atomic propositions and boolean operators
 - temporal operators + "subscript $\sim c$ " $E\varphi U_{\sim c}\psi$ $A\varphi U_{\sim c}\psi$
 - where $\sim \in \{<,>,\leq,\geq,=\}, c \in \mathbb{N}$

Semantics

Semantics

ullet problem \to AF alarm

Semantics

- \bullet problem \rightarrow AF alarm
- A(¬ (give-money) U pin-ok)

Semantics

- \bullet problem \rightarrow AF alarm
- A(¬ (give-money) U pin-ok)
- problem $\rightarrow AF_{<1}$ alarm

CTL Model-checking

Discrete Transition System

Applying inductively labeling procedure

Example: if $\phi = \mathsf{EX}\psi$

CTL Model-checking

Discrete Transition System

Applying inductively labeling procedure

Example: if $\phi = \mathsf{EX}\psi$

Discrete Transition System

Applying inductively labeling procedure

Example: if $\phi = \mathsf{EX}\psi$

Timed automaton

Timed automaton

The region abstraction: Equivalence of finite index

- Compatibility between regions and constraints
- Compatibility between regions and time elapsing

Timed automaton

The region abstraction: Equivalence of finite index

- Compatibility between regions and constraints
- Compatibility between regions and time elapsing

The regions are consistent with the truth of TCTL formulae i.e ($v \cong v' \Rightarrow ((q, v) \models \Phi \Leftrightarrow (q, v') \models \Phi)$).

Timed automaton

The region abstraction: Equivalence of finite index

- Compatibility between regions and constraints
- Compatibility between regions and time elapsing

The regions are consistent with the truth of TCTL formulae i.e ($v \cong v' \Rightarrow ((q, v) \models \Phi \Leftrightarrow (q, v') \models \Phi)$).

Timed automaton

The regions are consistent with the truth of TCTL formulae i.e ($v \cong v' \Rightarrow ((q, v) \models \Phi \Leftrightarrow (q, v') \models \Phi)$).

Region graph: Timed automaton \bigotimes region abstraction

⇒ Discrete Transition System

Applying CTL labeling procedure

Timed automaton

The regions are consistent with the truth of TCTL formulae i.e $(v \cong v' \Rightarrow ((q, v) \models \Phi \Leftrightarrow (q, v') \models \Phi))$.

Region graph: Timed automaton \bigotimes region abstraction

⇒ Discrete Transition System

Applying CTL labeling procedure

Example:

$$\mathsf{E}\varphi\mathsf{U}_{\sim c}\psi\Leftrightarrow\mathsf{E}\varphi\mathsf{U}(\psi\wedge P_{\sim c})$$

where $P_{\sim c}$ is atomic proposition

- CTL and Timed CTL
- 2 Extension of TCTL:TCTL^{ext}
- 3 Expressiveness power
- 4 Model-checking
- Conclusion

TCTL^{ext}: Motivation

Context:

Verification of programs with boolean or integer variables

- Problem:
 - When modeling a given system, the abstracting phase can lead to a model where some variables have different values at a given point in time
 - In this work, we want to ignore these transient states
 - For this, we introduce a new until modality

Example: Two-hand relays

A safety device:

- both hands must be used to start some machine by pressing the two buttons simultaneously (within 0.5s)
- the machine stops as soon as one button is released.
- to ensure that operator is outside the danger zone

Example: Properties

P: When the machine is running, the two buttons are pushed

Example: Properties

P: When the machine is running, the two buttons are pushed

P:

$$s=1 \Rightarrow (L=1 \text{ and } R = 1)$$

Example: Properties

P: When the machine is running, the two buttons are pushed

P: $s=1 \Rightarrow (L=1 \text{ and } R=1)$

- P is not always true
- P is almost everywhere true

TCTL^{ext}: Definition and semantics

TCTL (Timed CTL):

• atomic propositions
$$P_1 P_2 \dots$$

• boolean operators
$$\neg \varphi \qquad \varphi \wedge \psi$$

• temporal operators
$$\mathbf{E}\varphi \mathbf{U}_{\sim c}\psi \qquad \mathbf{A}\varphi \mathbf{U}_{\sim c}\psi$$

$$\sim \in \{<,>,\leq,\geq,=\}, c \in \mathbb{N}$$

TCTL^{ext}: Definition and semantics

- TCTL (Timed CTL):
 - atomic propositions $P_1 P_2 \dots$
 - boolean operators $\neg \varphi \qquad \varphi \wedge \psi$
 - temporal operators $\mathbf{E} \varphi \mathbf{U}_{\sim c} \psi$ $\mathbf{A} \varphi \mathbf{U}_{\sim c} \psi$

$$\sim \in \{<,>,\leq,\geq,=\}, c \in \mathbb{N}$$

- + "almost everywhere" operators
 - $\bullet \qquad \mathsf{E}_{\varphi}\mathsf{U}_{\sim\mathsf{c}}^{\mathsf{a}}\psi \qquad \mathsf{A}_{\varphi}\mathsf{U}_{\sim\mathsf{c}}^{\mathsf{a}}\psi$

Timed automata (example)

x, y: clocks

$$\xrightarrow{q_0} x \leq 5, \ y := 0$$

$$\xrightarrow{q_1} y > 1, \ x := 0$$

Timed automata (example)

x, y: clocks

$$\xrightarrow{q_0} x \leq 5, \ y := 0$$

$$\xrightarrow{q_1} y > 1, \ x := 0$$

$$\xrightarrow{q_2}$$

$$\rightarrow p <_{\rho} p' <_{\rho} p''$$

$$\rightarrow \hat{\mu}$$
 measure on ρ :

$$\rightarrow \hat{\mu}$$
 measure on ρ : $\hat{\mu}(p \stackrel{\sigma}{\mapsto} p'') = 4.1$

$$\hat{\mu}(p' \stackrel{\sigma}{\mapsto} p'') = 0$$

Semantics

A TCTL^{ext} formula is interpreted over a configuration s = (q, v).

$$s \models \mathsf{E}\varphi \mathsf{U}^\mathsf{a}_{\sim \mathsf{c}}\psi \Leftrightarrow \quad \exists \, \rho \in \mathsf{Exec}(s) \, \mathsf{s.t.} \, \rho \models \varphi \mathsf{U}^\mathsf{a}_{\sim \mathsf{c}}\psi$$

$$\underset{\rho}{\rho} \models \varphi \mathsf{U}^{\mathsf{a}}_{\sim \mathsf{c}} \psi \quad \Leftrightarrow \quad \exists \sigma \text{ s.t. } \hat{\mu}(\sigma) > 0, \\ \exists \rho \in \sigma, \ \mathsf{Time}(\rho^{\leq \rho}) \sim c$$

$$\forall p' \in \sigma, s_{p'} \models \psi, \ \hat{\mu}(\{p' \mid p' <_{\rho} p \land s_{p'} \not\models \varphi\}) = 0$$

Example

$$(q_0,0)\models \mathsf{AG^a}\psi$$
 but $(q_0,0)\not\models \mathsf{AG}\psi$

where AGa ψ means " ψ holds almost everywhere "

Model of two-hand relays

$$AG^{a}(s=1 \Rightarrow (L=1 \text{ and } R=1))$$
 is true

Outline

- 1 CTL and Timed CTL
- Extension of TCTL:TCTL^{ext}
- 3 Expressiveness power
- Model-checking

Theorem

• U cannot be expressed by U^a.

proof q₀ q'_0 A:x > 0, x := 0x > 0, x := 0 r'_0 $\neg a$ q₁ $(q_0, 0) \equiv_{\mathsf{TCTL}^a} (q'_0, 0)$, but $(q_0, 0) \models \mathsf{E}(\mathsf{aU}b)$, $(q'_0, 0) \not\models \mathsf{E}(\mathsf{aU}b)$

Expressivity

$\mathsf{Theorem}$

U^a cannot be expressed by U.

proof

- M_1 and N_1 satisfy the same TCTL formulae of size equal to 1
- but, $M_1 \models \mathsf{E}(\mathsf{a}\mathsf{U}(\neg \mathsf{a} \land \mathsf{EF}_{=0}\mathsf{a}))$ and $N_1 \not\models \mathsf{E}(\mathsf{a}\mathsf{U}(\neg \mathsf{a} \land \mathsf{EF}_{=0}\mathsf{a}))$

- $M_2 \models E(aU(\neg a \land EF_{=0}a))$ and $N_2 \models E(aU(\neg a \land EF_{=0}a))$
- but, $\varphi := \mathsf{E}(\mathsf{a}\mathsf{U}(\neg a \wedge \mathsf{EF}_{=0}(a \wedge \mathsf{E}(\mathsf{a}\mathsf{U}(\neg a \wedge \mathsf{EF}_{=0}a)))))$ we have: $M_2 \models \varphi$ and $N_2 \not\models \varphi$

Expressivity

ullet M_i and N_i satisfy the same TCTL formulae whose size is less than i

- M_i and N_i satisfy the same TCTL formulae whose size is less than i
- but, $M_i \models E(aU_{>0}^ab)$ and $N_i \not\models E(aU_{>0}^ab)$

Outline

- CTL and Timed CTL
- Extension of TCTL:TCTL^{ext}
- Expressiveness power
- Model-checking

The standard regions are consistent with the truth of TCTL^{ext} formulae

- The standard regions are consistent with the truth of TCTL^{ext} formulae
- We can extend the labeling procedures for verifying U^a

- The standard regions are consistent with the truth of TCTL^{ext} formulae
- We can extend the labeling procedures for verifying U^a

- The standard regions are consistent with the truth of TCTL^{ext} formulae
- We can extend the labeling procedures for verifying U^a

$$\mathsf{EG}^{\mathsf{a}}_{<\mathsf{c}}\varphi \Leftrightarrow \mathsf{E}^{+}(\mathsf{p}_{\mathsf{b}}\vee\varphi)\mathsf{U}\mathsf{p}_{=\mathsf{c}}$$

- The standard regions are consistent with the truth of TCTL^{ext} formulae
- We can extend the labeling procedures for verifying U^a

$$\mathsf{EG}^{\mathsf{a}}_{<\mathsf{c}} \varphi \Leftrightarrow \mathsf{E}^{+}(\mathsf{p}_{\mathsf{b}} \vee \varphi)\mathsf{U}\mathsf{p}_{=\mathsf{c}}$$

Same complexity

Theorem

Model checking TCTL^{ext} over timed automata is PSPACE-complete.

- 1 CTL and Timed CTL
- Extension of TCTL:TCTL^{ext}
- Expressiveness power
- Model-checking
- Conclusion

Conclusion

- Adding new modalities U^a increase the expressive power of TCTL.
- Model-checking for TCTL^{ext} is PSPACE-complete
- Future work:
 - extend the algorithms on zones to verify U^a
 - ullet extend the results with intervals of size a parameter Δ

$$\varphi = \mathsf{E} \mathsf{a} \mathsf{U}_{=1} \mathsf{b}$$

$$(q_0,0) \not\models \mathsf{AG}(\neg \varphi) \text{ but } (q_0,0) \models \mathsf{AG}^a(\neg \varphi)$$